Golang中的管道(channel) 、goroutine与channel实现并发、单向管道、select多路复用以及goroutine panic处理

Golang中的管道(channel) 、goroutine与channel实现并发、单向管道、select多路复用以及goroutine panic处理

目录

管道(channel)

无缓冲管道

有缓冲管道

需要注意

goroutine与channel实现并发

单向管道

定义单向管道

将双向管道转换为单向管道

单向管道作为函数参数

单向管道的代码示例

select多路复用

案例演示

goroutine panic处理

案例演示


管道(channel)

管道(channel)是 Go 语言中实现并发的一种方式,它可以在多个 goroutine 之间进行通信和数据交换。管道可以看做是一个队列,通过它可以进行先进先出的数据传输,支持并发的读和写。

Go 语言中使用 make 函数来创建一个管道,它的语法如下:

ch := make(chan 数据类型)

其中,数据类型可以是任意的 Go 语言数据类型,例如 int、string 等。创建了一个管道之后,我们就可以在多个 goroutine 之间进行数据传输了。

无缓冲管道

无缓冲管道是指在创建管道时没有指定容量,也就是说,它只能存储一个元素,当一个 goroutine 尝试向管道发送数据时,它会阻塞直到另一个 goroutine 从管道中读取数据。同样的,当一个 goroutine 尝试从管道中读取数据时,它也会阻塞直到另一个 goroutine 向管道中发送数据。

示例代码:

package main

import (
    "fmt"
)

func main() {
    ch := make(chan int)
    go func() {
        ch <- 10
    }()
    fmt.Println(<-ch)
}

创建了一个无缓冲管道 ch,并在一个 goroutine 中向管道中发送了一个整数 10。在主 goroutine 中,我们通过 <-ch 从管道中读取数据并打印出来。

有缓冲管道

有缓冲管道是指在创建管道时指定了容量,这时候它可以存储多个元素,但是当管道已满时,尝试向管道发送数据的 goroutine 会被阻塞,直到另一个 goroutine 从管道中读取数据以腾出空间。同样的,当管道为空时,尝试从管道中读取数据的 goroutine 也会被阻塞,直到另一个 goroutine 向管道中发送数据。

示例代码:

package main

import (
    "fmt"
)

func main() {
    ch := make(chan int, 2)
    ch <- 10
    ch <- 20
    fmt.Println(<-ch)
    fmt.Println(<-ch)
}

创建了一个容量为 2 的有缓冲管道 ch,并在主 goroutine 中向管道中依次发送了整数 1020。接着,我们依次从管道中读取数据并打印出来。

需要注意

1.管道是有缓冲的,可以通过指定缓冲区大小来控制数据在管道中的流动。如果缓冲区已满,写入操作将会阻塞直到缓冲区有空间;如果缓冲区为空,读取操作将会阻塞直到有数据写入。

2.管道的写入和读取操作都是阻塞的,直到操作完成才会返回。如果需要非阻塞的读写操作,可以使用select语句进行多路复用。

3.管道可以被关闭,一旦管道被关闭,读取操作将不再阻塞,返回一个零值和一个标识管道已关闭的错误;写入操作将会抛出 panic。为了避免 panic,可以在写入操作之前先检查管道是否已关闭。

4.管道可以用作信号量或同步器,例如使用一个无缓冲的管道实现多个 goroutine 之间的同步。

goroutine与channel实现并发

下面是一个协程与管道实现并发的代码示例,其中使用了两个管道,一个用于发送整数数据,另一个用于接收处理后的数据:

package main

import (
	"fmt"
)

func produce(out chan<- int) {
	for i := 0; i < 5; i++ {
		out <- i
	}
	close(out)
}

func consume(in <-chan int, out chan<- int) {
	for v := range in {
		out <- v * v
	}
	close(out)
}

func main() {
	ch1 := make(chan int)
	ch2 := make(chan int)

	go produce(ch1)
	go consume(ch1, ch2)

	for v := range ch2 {
		fmt.Println(v)
	}
}

代码分析:

1.使用 make 函数创建了两个整数类型的管道 ch1ch2

2.使用 go 关键字分别启动了函数 produceconsume 的协程,其中函数 produce 向管道 ch1 中发送了整数数据,函数 consume 从管道 ch1 中接收数据进行处理,将处理结果发送到管道 ch2 中。

3.在主协程中,使用 range 关键字从管道 ch2 中循环接收处理结果,并将接收到的数据打印出来。

单向管道

在 Go 语言中,有的时候我们会将管道作为参数在多个任务函数间传递,很多时候我们在不同的任务函数中使用管道都会对其进行限制,比如限制管道在函数中只能发送或者只能接收。

定义单向管道

定义一个单向管道可以使用 channel 类型加上箭头运算符(<-)指定读写方向。

例如,定义一个只能写入字符串的单向管道可以使用以下语句:

var ch chan<- string

定义一个只能读出字符串的单向管道可以使用以下语句:

var ch <-chan string   

将双向管道转换为单向管道

双向管道可以转换为只读或只写的单向管道,例如,将一个双向管道转换为只读的单向管道可以使用以下语句:

var ch chan string
var chRead <-chan string = ch

将一个双向管道转换为只写的单向管道可以使用以下语句:

var ch chan string
var chWrite chan<- string = ch

单向管道作为函数参数

单向管道可以作为函数参数来限制管道的读写方向。例如,以下函数接受只读的单向管道作为参数:

func readData(ch <-chan string) {
    // ...
}

以下函数接受只写的单向管道作为参数:

func writeData(ch chan<- string) {
    // ...
}

单向管道的代码示例

以下是一个使用单向管道的代码示例,该示例将一个双向管道转换为只读和只写的单向管道,并将这些单向管道作为函数参数传递:

package main

import "fmt"

func readData(ch <-chan int) {
    for i := range ch {
        fmt.Println("Read data:", i)
    }
}

func writeData(ch chan<- int) {
    for i := 0; i < 5; i++ {
        ch <- i
    }
    close(ch)
}

func main() {
    ch := make(chan int)
    chRead := (<-chan int)(ch)
    chWrite := (chan<- int)(ch)
    go readData(chRead)
    go writeData(chWrite)
    select {}
}

在上面的代码示例中,定义了一个双向管道 ch,然后将它转换为只读的单向管道 chRead 和只写的单向管道 chWrite,并分别将它们作为 readData 和 writeData 函数的参数传递。在 main 函数中,将 readData 和 writeData 函数放入不同的 goroutine 中运行,以便它们可以并发地读取和写入数据。最后使用 select {} 让主程序保持运行,以便 goroutine 可以继续运行。

select多路复用

在Go语言中,select语句可以用于多路复用I/O操作,其语法结构类似于switch语句。它可以同时监视多个管道的读写操作,并在其中一个通道满足读写条件时执行相应的操作。

select语句的语法如下:

select {
case <-ch1:
    // 处理从 ch1 读取到的数据
case data := <-ch2:
    // 处理从 ch2 读取到的数据
case ch3 <- data:
    // 向 ch3 写入数据
default:
    // 如果没有任何 case 语句满足条件,则执行 default 语句
}

select语句中,每个case分支必须是一个通道操作,要么是从通道中读取数据,要么是向通道中写入数据。其中,default分支是可选的,表示如果没有任何case语句满足条件,则执行default语句。

案例演示

package main

import (
    "fmt"
    "time"
)

func main() {
    ch1 := make(chan int)
    ch2 := make(chan int)

    go func() {
        for i := 1; i <= 5; i++ {
            ch1 <- i
            time.Sleep(time.Second)
        }
    }()

    go func() {
        for i := 1; i <= 5; i++ {
            ch2 <- i * i
            time.Sleep(500 * time.Millisecond)
        }
    }()

    for i := 0; i < 10; i++ {
        select {
        case data := <-ch1:
            fmt.Println("Received from ch1:", data)
        case data := <-ch2:
            fmt.Println("Received from ch2:", data)
        }
    }
}

在这个示例中,我们创建了两个通道ch1ch2,并分别向其中写入一些数据。在主函数中,我们使用select语句监听这两个通道,并在其中一个通道中有数据时输出该数据。由于ch1的写入间隔为1秒,而ch2的写入间隔为500毫秒,因此我们可以看到输出的数据是交替出现的。

goroutine panic处理

panic是Go语言中的一种异常处理机制,它的出现是为了让程序在遇到某些不可控制的情况时,能够快速反应,而不是无限期的等待。panic的用法有两种:一种是在程序中显式地调用panic函数,用于处理特定的异常情况;另一种是在程序运行过程中,由于某些不可控制的原因,程序自动抛出panic异常。

案例演示

// 函数
func sayHello() {
    for i := 0; i < 10; i++ {
        fmt.Println("hello,world")
    }
}

// 问题函数
func test() {
    //这里使用defer + recover
    defer func() { //匿名自执行函数
        if err := recover(); err != nil {
            fmt.Println("test() 发生错误", err)
        }
    }()
    //定义一个map
    var myMap map[int]string
    myMap[0] = "hello"
}

func main() {
    //当两个协程中一个出现问题时,另一个也不会进行操作,可以使用异常处理避免
    go sayHello()
    go test()
    //防止主进程退出这里利用time.Sleep
    time.Sleep(time.Second)
}

输出结果:

转载请说明出处内容投诉
CSS教程_站长资源网 » Golang中的管道(channel) 、goroutine与channel实现并发、单向管道、select多路复用以及goroutine panic处理

发表评论

欢迎 访客 发表评论

一个令你着迷的主题!

查看演示 官网购买