1. RL_brain
import numpy as np
import pandas as pd
import tensorflow as tf
np.random.seed(1)
tf.set_random_seed(1)
# Deep Q ***work off-policy
class DeepQ***work:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=None,
output_graph=False,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
# total learning step
self.learn_step_counter = 0
# initialize zero memory [s, a, r, s_]
self.memory = np.zeros((self.memory_size, n_features * 2 + 2))
# consist of [target_***, evaluate_***]
self._build_***()
t_params = tf.get_collection('target_***_params')
e_params = tf.get_collection('eval_***_params')
self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.cost_his = []
def _build_***(self):
# ------------------ build evaluate_*** ------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
with tf.variable_scope('eval_***'):
# c_names(collections_names) are the collections to store variables
c_names, n_l1, w_initializer, b_initializer = \
['eval_***_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
# first layer. collections is used later when assign to target ***
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
# second layer. collections is used later when assign to target ***
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_eval = tf.matmul(l1, w2) + b2
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
# ------------------ build target_*** ------------------
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
with tf.variable_scope('target_***'):
# c_names(collections_names) are the collections to store variables
c_names = ['target_***_params', tf.GraphKeys.GLOBAL_VARIABLES]
# first layer. collections is used later when assign to target ***
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
# second layer. collections is used later when assign to target ***
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_next = tf.matmul(l1, w2) + b2
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
transition = np.hstack((s, [a, r], s_))
# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition
self.memory_counter += 1
def choose_action(self, observation):
# to have batch dimension when feed into tf placeholder
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
# forward feed the observation and get q value for every actions
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
action = np.argmax(actions_value)
else:
action = np.random.randint(0, self.n_actions)
return action
def learn(self):
# check to replace target parameters
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.replace_target_op)
print('\ntarget_params_replaced\n')
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
q_next, q_eval = self.sess.run(
[self.q_next, self.q_eval],
feed_dict={
self.s_: batch_memory[:, -self.n_features:], # fixed params
self.s: batch_memory[:, :self.n_features], # newest params
})
# change q_target w.r.t q_eval's action
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int)
reward = batch_memory[:, self.n_features + 1]
q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
"""
For example in this batch I have 2 samples and 3 actions:
q_eval =
[[1, 2, 3],
[4, 5, 6]]
q_target = q_eval =
[[1, 2, 3],
[4, 5, 6]]
Then change q_target with the real q_target value w.r.t the q_eval's action.
For example in:
sample 0, I took action 0, and the max q_target value is -1;
sample 1, I took action 2, and the max q_target value is -2:
q_target =
[[-1, 2, 3],
[4, 5, -2]]
So the (q_target - q_eval) be***es:
[[(-1)-(1), 0, 0],
[0, 0, (-2)-(6)]]
We then backpropagate this error w.r.t the corresponding action to ***work,
leave other action as error=0 cause we didn't choose it.
"""
# train eval ***work
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target})
self.cost_his.append(self.cost)
# increasing epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his)), self.cost_his)
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.show()
初始化函数__init__:在类的初始化函数中,定义了一些参数,如学习率、折扣因子、探索率等。
同时,初始化了一个记忆库(memory),用于存储经验(状态、动作、奖励、下一个状态)。此
外,还创建了两个神经网络(评估网络和目标网络),并设置了训练过程。
_build_***方法:这个方法用于构建评估网络和目标网络。评估网络用于计算当前状态下每个动作
的Q值,而目标网络用于计算下一个状态下每个动作的Q值。这两个网络的结构相同,都是由两个
全连接层组成。store_transition方法:这个方法用于将经验(状态、动作、奖励、下一个状态)存
储到记忆库中。当记忆库满了之后,新的经验会替换掉最早的经验。
choose_action方法:这个方法用于根据当前状态选择动作。首先,通过评估网络计算当前状态下
每个动作的Q值。然后,根据当前的探索率(epsilon)来决定是选择具有最大Q值的动作(贪婪策
略),还是随机选择一个动作(探索策略)。
首先,检查是否需要替换目标参数。如果学习步数(self.learn_step_counter)是替换目标迭代次
数(self.replace_target_iter)的倍数,则执行替换操作,并打印出提示信息。接下来,从记忆中
随机抽取一批样本。根据记忆库的大小和当前的记忆计数器(self.memory_counter),选择相应
的索引进行抽样。然后,根据这些索引从记忆中获取对应的批次数据(batch_memory)。使用当
前的评估网络(self.q_eval)和下一个状态(self.s_)计算每个动作的Q值(q_next),同时使用
最新的状态(self.s)和评估网络计算每个动作的Q值(q_eval)。
根据评估网络的动作选择结果,更新目标Q值(q_target)。具体来说,将评估网络的Q值复制到
目标Q值中,并根据实际奖励和折扣因子(self.gamma)以及下一个状态的最大Q值来更新对应动
作的目标Q值。使用梯度下降法训练评估网络。通过计算目标Q值和评估网络的Q值之间的误差,
并将其反向传播到网络中,以更新网络的权重。在每次学习步骤之后,增加探索率
(self.epsilon)。探索率用于控制智能体在探索和利用之间平衡的程度。随着学习的进行,探索率
逐渐增加,以便智能体更多地利用已知的知识而不是继续探索。最后,将学习步数加一,以便在下
一次调用learn方法时进行适当的替换操作。
2. maze_env
import numpy as np
import time
import sys
if sys.version_info.major == 2:
import Tkinter as tk
else:
import tkinter as tk
UNIT = 40 # pixels
MAZE_H = 4 # grid height
MAZE_W = 4 # grid width
class Maze(tk.Tk, object):
def __init__(self):
super(Maze, self).__init__()
self.action_space = ['u', 'd', 'l', 'r']
self.n_actions = len(self.action_space)
self.n_features = 2
self.title('maze')
self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
self._build_maze()
def _build_maze(self):
self.canvas = tk.Canvas(self, bg='white',
height=MAZE_H * UNIT,
width=MAZE_W * UNIT)
# create grids
for c in range(0, MAZE_W * UNIT, UNIT):
x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
self.canvas.create_line(x0, y0, x1, y1)
for r in range(0, MAZE_H * UNIT, UNIT):
x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
self.canvas.create_line(x0, y0, x1, y1)
# create origin
origin = np.array([20, 20])
# hell
hell1_center = origin + np.array([UNIT * 2, UNIT])
self.hell1 = self.canvas.create_rectangle(
hell1_center[0] - 15, hell1_center[1] - 15,
hell1_center[0] + 15, hell1_center[1] + 15,
fill='black')
# hell
# hell2_center = origin + np.array([UNIT, UNIT * 2])
# self.hell2 = self.canvas.create_rectangle(
# hell2_center[0] - 15, hell2_center[1] - 15,
# hell2_center[0] + 15, hell2_center[1] + 15,
# fill='black')
# create oval
oval_center = origin + UNIT * 2
self.oval = self.canvas.create_oval(
oval_center[0] - 15, oval_center[1] - 15,
oval_center[0] + 15, oval_center[1] + 15,
fill='yellow')
# create red rect
self.rect = self.canvas.create_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
# pack all
self.canvas.pack()
def reset(self):
self.update()
time.sleep(0.1)
self.canvas.delete(self.rect)
origin = np.array([20, 20])
self.rect = self.canvas.create_rectangle(
origin[0] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill='red')
# return observation
return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)
def step(self, action):
s = self.canvas.coords(self.rect)
base_action = np.array([0, 0])
if action == 0: # up
if s[1] > UNIT:
base_action[1] -= UNIT
elif action == 1: # down
if s[1] < (MAZE_H - 1) * UNIT:
base_action[1] += UNIT
elif action == 2: # right
if s[0] < (MAZE_W - 1) * UNIT:
base_action[0] += UNIT
elif action == 3: # left
if s[0] > UNIT:
base_action[0] -= UNIT
self.canvas.move(self.rect, base_action[0], base_action[1]) # move agent
next_coords = self.canvas.coords(self.rect) # next state
# reward function
if next_coords == self.canvas.coords(self.oval):
reward = 1
done = True
elif next_coords in [self.canvas.coords(self.hell1)]:
reward = -1
done = True
else:
reward = 0
done = False
s_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)
return s_, reward, done
def render(self):
# time.sleep(0.01)
self.update()
使用tkinter库创建的迷宫环境类。在这个环境中,智能体需要从红色矩形到达黄色圆形,同时避免
黑色矩形区域。环境提供了以下方法:
__init__(self): 初始化迷宫环境,包括设置窗口大小、标题等。
_build_maze(self): 构建迷宫,包括绘制网格线、创建障碍物和目标点。
reset(self): 重置迷宫环境,将红色矩形放回初始位置,并返回当前状态。
step(self, action): 根据给定动作,更新红色矩形的位置,并返回下一个状态、奖励值和是否结束。
render(self): 更新迷宫环境的显示。
3. DQN_modified
import numpy as np
import tensorflow as tf
np.random.seed(1)
tf.set_random_seed(1)
# Deep Q ***work off-policy
class DeepQ***work:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=None,
output_graph=False,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
# total learning step
self.learn_step_counter = 0
# initialize zero memory [s, a, r, s_]
self.memory = np.zeros((self.memory_size, n_features * 2 + 2))
# consist of [target_***, evaluate_***]
self._build_***()
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_***')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_***')
with tf.variable_scope('hard_replacement'):
self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
if output_graph:
# $ tensorboard --logdir=logs
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.cost_his = []
def _build_***(self):
# ------------------ all inputs ------------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input State
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input Next State
self.r = tf.placeholder(tf.float32, [None, ], name='r') # input Reward
self.a = tf.placeholder(tf.int32, [None, ], name='a') # input Action
w_initializer, b_initializer = tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)
# ------------------ build evaluate_*** ------------------
with tf.variable_scope('eval_***'):
e1 = tf.layers.dense(self.s, 20, tf.nn.relu, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='e1')
self.q_eval = tf.layers.dense(e1, self.n_actions, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='q')
# ------------------ build target_*** ------------------
with tf.variable_scope('target_***'):
t1 = tf.layers.dense(self.s_, 20, tf.nn.relu, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='t1')
self.q_next = tf.layers.dense(t1, self.n_actions, kernel_initializer=w_initializer,
bias_initializer=b_initializer, name='t2')
with tf.variable_scope('q_target'):
q_target = self.r + self.gamma * tf.reduce_max(self.q_next, axis=1, name='Qmax_s_') # shape=(None, )
self.q_target = tf.stop_gradient(q_target)
with tf.variable_scope('q_eval'):
a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices) # shape=(None, )
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval_wrt_a, name='TD_error'))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
transition = np.hstack((s, [a, r], s_))
# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition
self.memory_counter += 1
def choose_action(self, observation):
# to have batch dimension when feed into tf placeholder
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
# forward feed the observation and get q value for every actions
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
action = np.argmax(actions_value)
else:
action = np.random.randint(0, self.n_actions)
return action
def learn(self):
# check to replace target parameters
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.target_replace_op)
print('\ntarget_params_replaced\n')
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
_, cost = self.sess.run(
[self._train_op, self.loss],
feed_dict={
self.s: batch_memory[:, :self.n_features],
self.a: batch_memory[:, self.n_features],
self.r: batch_memory[:, self.n_features + 1],
self.s_: batch_memory[:, -self.n_features:],
})
self.cost_his.append(cost)
# increasing epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his)), self.cost_his)
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.show()
if __name__ == '__main__':
DQN = DeepQ***work(3,4, output_graph=True)
初始化函数__init__:定义了神经网络的参数,如学习率、折扣因子、探索率等。同时初始化了经
验回放存储器,用于存储过去的经验。
_build_***方法:构建了两个神经网络,一个是评估网络(eval_***),另一个是目标网络
(target_***)。这两个网络的结构相同,但参数不同。评估网络用于计算当前状态下的动作值,
目标网络用于计算下一状态下的动作值。
store_transition方法:将经验(状态、动作、奖励、下一状态)存储到经验回放存储器中。
choose_action方法:根据当前状态选择动作。首先计算所有动作的值,然后根据贪婪策略选择一
个动作。如果随机数小于当前的探索率,则随机选择一个动作;否则选择具有最大动作值的动作。
learn方法:从经验回放存储器中随机抽取一批经验,然后使用这些经验更新评估网络的参数。同
时,每隔一定步数,将评估网络的参数复制到目标网络中。
plot_cost方法:绘制损失函数随训练步数的变化曲线,用于观察模型的学习过程。
4. run
from maze_env import Maze
from RL_brain import DeepQ***work
def run_maze():
step = 0
for episode in range(300):
# initial observation
observation = env.reset()
while True:
# fresh env
env.render()
# RL choose action based on observation
action = RL.choose_action(observation)
# RL take action and get next observation and reward
observation_, reward, done = env.step(action)
RL.store_transition(observation, action, reward, observation_)
if (step > 200) and (step % 5 == 0):
RL.learn()
# swap observation
observation = observation_
# break while loop when end of this episode
if done:
break
step += 1
# end of game
print('game over')
env.destroy()
if __name__ == "__main__":
# maze game
env = Maze()
RL = DeepQ***work(env.n_actions, env.n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=200,
memory_size=2000,
# output_graph=True
)
env.after(100, run_maze)
env.mainloop()
RL.plot_cost()
这段代码使用了两个模块:maze_env和RL_brain。maze_env模块定义了迷宫环境,而RL_brain
模块定义了深度Q网络。在run_maze()函数中,首先初始化了一个迷宫环境对象env和一个深度Q
网络对象RL。然后进行了300个回合的训练。每个回合开始时,通过调用env.reset()方法获取初始
观察值observation。接下来进入一个循环,直到当前回合结束。
在循环中,首先调用env.render()方法来刷新环境显示。然后,根据当前的观察值observation,使
用深度Q网络选择动作action。接着,执行该动作并获取下一个观察值observation_、奖励值
reward以及是否结束的标志done。将这个经验(状态、动作、奖励、下一个状态)存储到经验回
放存储器中。
如果步数大于200且是5的倍数,则进行学习操作,即调用RL.learn()方法更新深度Q网络的参数。
然后将下一个观察值赋值给当前的观察值,以便进行下一步的动作选择。如果当前回合结束,则跳
出循环。最后,打印"game over"并销毁迷宫环境对象。在主程序部分,首先创建迷宫环境对象env
和深度Q网络对象RL。然后设置迷宫游戏的环境参数,如学习率、奖励衰减、贪婪策略等。接着,
使用env.after(100, run_maze)方法在100毫秒后启动迷宫游戏的主循环。最后,调用
env.mainloop()方法进入主循环,并在训练结束后绘制损失函数曲线。