一 前言
在某些场景中,比方GROUP BY聚合之后的后果,须要去更新之前的结果值。这个时候,须要将 kafka 记录的 key 当成主键解决,用来确定一条数据是应该作为插入、删除还是更新记录来解决。在 flink1.11 中,能够通过 flink-cdc-connectors 项目提供的 changelog-json format 来实现该性能。
在 Flink1.12 版本中, 新增了一个 upsert connector(upsert-kafka),该 connector 扩大自现有的 Kafka connector,工作在 upsert 模式(FLIP-149)下。新的 upsert-kafka connector 既能够作为 source 应用,也能够作为 sink 应用,并且提供了与现有的 kafka connector 雷同的基本功能和持久性保障,因为两者之间复用了大部分代码。
二 upsert kafka connector
Upsert Kafka Connector容许用户以upsert的形式从Kafka主题读取数据或将数据写入Kafka主题。
作为 source,upsert-kafka 连接器生产 changelog 流,其中每条数据记录代表一个更新或删除事件。更准确地说,数据记录中的 value 被解释为同一 key 的最后一个 value 的 UPDATE,如果有这个 key(如果不存在相应的 key,则该更新被视为 INSERT)。用表来类比,changelog 流中的数据记录被解释为 UPSERT,也称为 INSERT/UPDATE,因为任何具有相同 key 的现有行都被覆盖。另外,value 为空的消息将会被视作为 DELETE 消息。
作为 sink,upsert-kafka 连接器可以消费 changelog 流。它会将 INSERT/UPDATE_AFTER 数据作为正常的 Kafka 消息写入,并将 DELETE 数据以 value 为空的 Kafka 消息写入(表示对应 key 的消息被删除)。Flink 将根据主键列的值对数据进行分区,从而保证主键上的消息有序,因此同一主键上的更新/删除消息将落在同一分区中。
其中每条数据记录代表一个更新或删除事件,原理如下:
- Kafka Topic中存在相应的Key,则以UPDATE操作将Key的值更新为数据记录中的Value。
- Kafka Topic中不存在相应的Key,则以INSERT操作将Key的值写入Kafka Topic。
- Key对应的Value为空,会被视作DELETE操作。
三 案例
3.1 kafka 处理后写入kafka
3.1.1 创建kafka topic
$ kafka-topics --create --topic user-behavior --partitions 3 --replication-factor 2 --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
$ kafka-topics --create --topic after-user-behavior --partitions 3 --replication-factor 2 --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
$ kafka-console-producer --topic user-behavior --broker-list cdh68:9092,cdh69:9092,cdh70:9092
$ kafka-console-consumer --topic user-behavior --from-beginning --group test-user --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
$ kafka-console-consumer --topic after-user-behavior --from-beginning --group test --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
3.2 Flink SQL
3.2.1 source
%flink.ssql
drop table if exists user_behavior;
CREATE TABLE user_behavior (
id BIGINT,
name STRING,
flag STRING
) WITH (
'connector' = 'kafka', -- 使用 kafka connector
'topic' = 'user-behavior', -- kafka topic
'properties.group.id'='cdc', -- 消费者组
'scan.startup.mode' = 'latest-offset', -- 从起始 offset 开始读取
'json.fail-on-missing-field' = 'false',
'json.ignore-parse-errors' = 'true',
'properties.bootstrap.servers' = 'cdh68:9092,cdh69:9092,cdh70:9092', -- kafka broker 地址
'format' = 'json' -- 数据源格式为 json
);
3.2.2 sink
%flink.ssql
drop table if exists after_user_behavior;
CREATE TABLE after_user_behavior (
name STRING,
pv BIGINT,
PRIMARY KEY (name) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'topic' = 'after-user-behavior',
'properties.bootstrap.servers' = 'cdh68:9092,cdh69:9092,cdh70:9092',
'value.json.fail-on-missing-field' = 'false',
'key.json.ignore-parse-errors' = 'true',
'key.format' = 'json',
'value.format' = 'json'
);
一定要设置主键 Primar要使用 upsert-kafka connector,DDL语句中,一定要设置 PRIMARY KEY 主键,并为键(key.format)和值(value.format)指定序列化反序列化格式。
当数据源端进行了增删改,对应的 pv 结果就会同步更新,这就是 upsert kafka 的魅力。
这是基于kafka的统计计算,前提条件是 topic user-behavior中的数据是 changelog 格式的。
3.2.3 transform
%flink.ssql
INSERT INTO after_user_behavior
SELECT
name,
COUNT(*)
FROM user_behavior
GROUP BY name;
注意:after_user_behavior 必须为 upsert-kafka connector
如果after_user_behavior为 kafka connector,执行此语句则会报如下错误:
java.io.IOException: org.apache.flink.table.api.TableException: Table sink 'default_catalog.default_database.after_user_behavior' doesn't support consuming update changes which is produced by node GroupAggregate(groupBy=[name], select=[name, COUNT(*) AS EXPR$1])
因为语句SELECT name, COUNT(*) FROM user_behavior GROUP BY name;
通过group by后数据是不断更新变化的,因此只能用 upsert-kafka connector。
3.3 输出结果
3.3.1 kafka user-behavior producer
[song@cdh68 ~]$ kafka-console-producer --topic user-behavior --broker-list cdh68:9092,cdh69:9092,cdh70:9092
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"user","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"info","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"info","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"UPDATE","table":"user","ts":6852139698555588608}
>{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"DELETE","table":"user","ts":6852139698555588608}
topic user-behavior中的数据是 changelog 格式的。
3.3.2 kafka user-behavior consumer
[song@cdh70 ~]$ kafka-console-consumer --topic user-behavior --group test-user --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"user","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"info","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"info","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"UPDATE","table":"user","ts":6852139698555588608}
{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"DELETE","table":"user","ts":6852139698555588608}
3.3.3 kafka after-user-behavior consumer
[song@cdh69 ~]$ kafka-console-consumer --topic after-user-behavior --group test --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
{"name":"Mars","pv":1}
{"name":"Lucy","pv":1}
{"name":"Mars","pv":2}
{"name":"Lucy","pv":2}
{"name":"Mars","pv":3}
{"name":"Mars","pv":4}
{"name":"Mars","pv":5}
{"name":"Mars","pv":6}
3.3.4 FlinkSQL user_behavior
从此结果可以看出 kafka 和 upsert-kafka 的区别:
kafka 的结果则显示所有数据,upsert-kafka则显示更新后的最新数据。
3.3.5 FlinkSQL alfter_user_behavior
此结果是动态变化的,变化与kafka after-user-behavior consumer相同。
可见,upsert-kafka 表存储了所有变化的数据,但是读取时,只读取最新的数据。
3.2 flink-pageviews-demo
https://github.***/fsk119/flink-pageviews-demo
3.2.1 测试数据准备
在 Mysql 中执行以下命令:
CREATE DATABASE flink;
USE flink;
CREATE TABLE users (
user_id BIGINT,
user_name VARCHAR(1000),
region VARCHAR(1000)
);
INSERT INTO users VALUES
(1, 'Timo', 'Berlin'),
(2, 'Tom', 'Beijing'),
(3, 'Apple', 'Beijing');
现在,我们利用Sql client在Flink中创建相应的表。
CREATE TABLE users (
user_id BIGINT,
user_name STRING,
region STRING
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'localhost',
'database-name' = 'flink',
'table-name' = 'users',
'username' = 'root',
'password' = '123456'
);
CREATE TABLE pageviews (
user_id BIGINT,
page_id BIGINT,
view_time TIMESTAMP(3),
proctime AS PROCTIME()
) WITH (
'connector' = 'kafka',
'topic' = 'pageviews',
'properties.bootstrap.servers' = 'localhost:9092',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);
并利用Flink 往 Kafka中灌入相应的数据
INSERT INTO pageviews VALUES
(1, 101, TO_TIMESTAMP('2020-11-23 15:00:00')),
(2, 104, TO_TIMESTAMP('2020-11-23 15:00:01.00'));
3.2.2 将 left join 结果写入 kafka
我们首先测试是否能将Left join的结果灌入到 Kafka 之中。
首先,我们在 Sql client 中创建相应的表
CREATE TABLE enriched_pageviews (
user_id BIGINT,
user_region STRING,
page_id BIGINT,
view_time TIMESTAMP(3),
WATERMARK FOR view_time as view_time - INTERVAL '5' SECOND,
PRIMARY KEY (user_id, page_id) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'topic' = 'enriched_pageviews',
'properties.bootstrap.servers' = 'localhost:9092',
'key.format' = 'json',
'value.format' = 'json'
);
并利用以下语句将left join的结果插入到kafka对应的topic之中。
INSERT INTO enriched_pageviews
SELECT pageviews.user_id, region, pageviews.page_id, pageviews.view_time
FROM pageviews
LEFT JOIN users ON pageviews.user_id = users.user_id;
利用以下命令,我们可以打印topic内的数据kafka-console-consumer.sh --bootstrap-server kafka:9094 --topic "enriched_pageviews" --from-beginning --property print.key=true
#预期结果
{"user_id":1,"page_id":101} {"user_id":1,"user_region":null,"page_id":101,"view_time":"2020-11-23 15:00:00"}
{"user_id":2,"page_id":104} {"user_id":2,"user_region":null,"page_id":104,"view_time":"2020-11-23 15:00:01"}
{"user_id":1,"page_id":101} null
{"user_id":1,"page_id":101} {"user_id":1,"user_region":"Berlin","page_id":101,"view_time":"2020-11-23 15:00:00"}
{"user_id":2,"page_id":104} null
{"user_id":2,"page_id":104} {"user_id":2,"user_region":"Beijing","page_id":104,"view_time":"2020-11-23 15:00:01"}
Left join中,右流发现左流没有join上但已经发射了,此时会发送DELETE
消息,而非UPDATE-BEFORE
消息清理之前发送的消息。详见org.apache.flink.table.runtime.operators.join.stream.StreamingJoinOperator#processElement
我们可以进一步在mysql中删除或者修改一些数据,来观察进一步的变化。
UPDATE users SET region = 'Beijing' WHERE user_id = 1;
DELETE FROM users WHERE user_id = 1;
3.2.3 将聚合结果写入kafka
我们进一步测试将聚合的结果写入到 Kafka 之中。
在Sql client 中构建以下表
CREATE TABLE pageviews_per_region (
user_region STRING,
***t BIGINT,
PRIMARY KEY (user_region) NOT ENFORCED
) WITH (
'connector' = 'upsert-kafka',
'topic' = 'pageviews_per_region',
'properties.bootstrap.servers' = 'localhost:9092',
'key.format' = 'json',
'value.format' = 'json'
)
我们再用以下命令将数据插入到upsert-kafka之中。
INSERT INTO pageviews_per_region
SELECT
user_region,
COUNT(*)
FROM enriched_pageviews
WHERE user_region is not null
GROUP BY user_region;
我们可以通过以下命令查看 Kafka 中对应的数据
./kafka-console-consumer.sh --bootstrap-server kafka:9094 --topic "pageviews_per_region" --from-beginning --property print.key=true
# 预期结果
{"user_region":"Berlin"} {"user_region":"Berlin","***t":1}
{"user_region":"Beijing"} {"user_region":"Beijing","***t":1}
{"user_region":"Berlin"} null
{"user_region":"Beijing"} {"user_region":"Beijing","***t":2}
{"user_region":"Beijing"} {"user_region":"Beijing","***t":1}